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ABSTRACT

In this paper we investigate the problem of fusing a set of features for a discriminative visual tracking algorithm,
where good features are those that best discriminate an object from the local background. Using a principled
Mutual Information approach, we introduce a novel online feature selection algorithm that preserves discrimina-
tive features while reducing redundant information. Applying this algorithm to a discriminative visual tracking
system, we experimentally demonstrate improved tracking performance on standard data sets.
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1. INTRODUCTION

Visual tracking (or video tracking) is the process of detecting objects and tracing their positions over time in an
image sequence. Discriminant tracking1 is an approach to visual tracking that treats detection as a two class
classification problem between the target object and its local background. Some challenging problems in visual
tracking, which can lead to a loss of track, include target object occlusions and model drift2 due to background
clutter. An online feature selection scheme that limits the amount of assumed knowledge about each object can
help to mitigate these problems. The adaptive approach for discriminant visual tracking presented by Collins
et al.1 proposed that the best features are those that best discriminate between the two classes. Using features
extracted from combinations of RGB pixel values, they tested this hypothesis by implementing an online feature
selection algorithm, coupling it with a mean shift tracking system.3 Features were selected based on their two-
class Variance Ratio (VR) scores, which were calculated from the log-likelihood ratio of the class-conditional
feature response distributions.

An outstanding problem in selecting features using this heuristic approach is that some of the features can
be highly correlated. This means that despite being discriminative, some level of redundancy is present among
the features, which can also contain information about the class labels. If this is not properly accounted for in
selecting the features then it can degrade overall performance in classification tasks4–6 or in discriminant track-
ing.7,8 In this paper we investigate this issue by applying the criterion of minimal-redundancy-maximal-relevance
(mRMR),5 which has been typically used for classification purposes, to online feature selection in discriminant
visual tracking. The improvements to tracking robustness offered by information theoretic feature selection is
demonstrated experimentally using the single object tracking algorithm of Collins et al.1 Furthermore, these
feature selection algorithms are also compared in the context of single object tracking using an existing multi-
object tracking algorithm, the Competitive Attentional Correlation Tracker using Shape and Feature Learning
(CACTuS-FL).9

This paper is organized as follows: section 2 provides an overview of the relevant information theory and its
application in the visual tracking literature, section 3 describes the implementation of our novel feature selection
scheme as well as the discriminative multi-object tracking system that is used to test it, in section 4 real-world
data sets are used to quantify the improvement in tracking robustness that is provided by our new feature
selection, and we conclude with a summary of our findings in section 5.
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2. FEATURE SELECTION USING MUTUAL INFORMATION

Feature selection serves as a pre-processing step in the detection stage of many visual tracking systems.10 Its
intended goals may include a reduction in the dimensionality of the data, removal of redundant features, and in
the case of classification tasks, the retention of features that are relevant to class labels. This section outlines
common feature selection approaches based on information theory and summarizes their existing applications to
discriminant visual tracking.

2.1 Information Theory

Mutual Information has been used in feature selection to measure dependencies between features. By treating
the response of two features as discrete random variables A and B, their Mutual Information is:

I(A;B) =
∑

a∈A,b∈B

p(a, b)log2
p(a, b)

p(a)p(b)
, (1)

where p(a) and p(b) are the marginal probability mass functions (PMFs) of the two feature responses, and p(a, b)
is their joint PMF. If the random variables A and B are independent, then p(a, b) = p(a)p(b), so that I(A;B) = 0.
Furthermore Mutual Information is non-negative (I(A;B) > 0) and symmetric (I(A;B) = I(B;A)). I(A;B) is
also called information gain, because it quantifies the reduction of the uncertainty in A by having knowledge of
B, and vice-versa:11

I(A;B) = H(A)−H(A|B)

= H(B)−H(B|A) ,
(2)

where H(A) is the entropy, which is a measure of the uncertainty in A:

H(A) = −
∑

a∈A

p(a)log2 p(a) , (3)

and H(A|B) is the conditional entropy :

H(A|B) = −
∑

a∈A,b∈B

p(a, b)log2 p(a|b) . (4)

Furthermore, Mutual Information can be expressed using Kullback-Leibler (KL) divergence:

I(A;B) = KL[p(a, b)||p(a)p(b)] , (5)

where KL[p(x)||q(x)] =
∑

x∈X p(x)log2
p(x)
q(x) is a metric for the distance between two distributions p and q.

Finally, the Symmetrical Uncertainty (SU)12 provides a normalized version of Mutual Information:

SU(A;B) = 2 [
I(A;B)

H(A) +H(B)
] , (6)

such that SU has range [0, 1].

2.2 Information Theoretic Feature Selection

By framing discriminant visual tracking as a two-class (target/background) classification problem, the most
discriminant subset of features X∗ can be prescribed using the infomax space,13 which has also been called
Max-Dependency .5 This is the subset of features that maximizes its Mutual Information I(X;C) with the two
class labels: background (C = 0) and target (C = 1)), where X is a subset of the K candidate (input) features
Xk, k = 1, ...,K. Using Eq. 2, this may be viewed as minimizing the uncertainty about which class is responsible
for the observed features H(C|X), which in turn relates to the minimization of the Bayes classification error.6,13



Given the difficulty in estimating the multi-variate joint PMFs required to compute I(X;C), a useful decom-
position that approximates the infomax space is given by the maximum marginal diversity (MMD):7,8, 13

I(X;C) ≈

N
∑

k=1

I(Xk;C)

=
N
∑

k=1

1
∑

i=0

∑

x∈Xk

p(Xk = x;C = i)log2
p(Xk = x;C = i)

p(Xk = x)p(C = i)

=

N
∑

k=1

1
∑

i=0

p(C = i)
∑

x∈Xk

p(Xk = x|C = i)log2
p(Xk = x|C = i)

p(Xk = x)

=

N
∑

k=1

1
∑

i=0

p(C = i)KL[p(Xk = x|C = i)||p(Xk = x)] ,

(7)

where N is the number of features to be selected. This shows that each marginal diversity I(Xk;C) is the
weighted average of the distance between the class-conditioned feature response distributions p(Xk = x|C = i)
and their mean p(Xk = x), where the weights are given by the class priors p(C = i). Hence the most discriminant
features, according to MMD, are those whose class-conditioned feature response distributions are well separated
from each other. Given the need to choose some N features, the MMD algorithm simply involves ordering
features according to the marginal diversity of each feature, and then selecting the top N features from this list.

The underlying assumption in approximating I(X;C) by
∑N

k=1 I(Xk;C) in Eq. 7 is that the Mutual Infor-
mation between a new candidate feature and the set of previously selected features do not provide additional
classification power.4,6, 13 While this assumption has been demonstrated to hold for features extracted using
band-pass (e.g. Gabor14 or wavelet) filters from natural images, it does not apply in general.6

To address this problem a number of heuristics exist that provide a closer approximation of the infomax
space without explicitly computing its joint multivariate distributions. One such example is the computationally
efficient predominant correlation filter of Yu & Liu.15 This algorithm applies a threshold to feature-class Sym-
metrical Uncertainty (SUc) values to select relevant features and then discards those considered to be redundant
by comparing SUc to their SU with other selected features. Another is the mRMR5 forward search method,
which is considered state of the art.6 For a first-order incremental search, where a set containing m− 1 selected
features (Sm−1) already exists and a new mth feature Xj from those remaining (X\Sm−1) is to be added, mRMR
simultaneously maximizes the relevance of the selected features to a target class while minimizing redundancy
between features:

max
Xj∈X\Sm−1

[I(Xj ;C)−
1

m− 1

∑

Xi∈Sm−1

I(Xj ;Xi)] . (8)

Peng et al.5 showed that mRMR and infomax space are equivalent for this type of first-order feature selection.

2.3 Related Work

Mutual Information has been used in online feature selection for discriminant visual tracking, however, to our
best knowledge, this study is the first to implement mRMR in full for this purpose. For instance, Alvarez-Santos
et al.16 used the minimal redundancy aspect of mRMR to perform offline feature selection and applied this to
a person-tracking mobile robot. Leung and Gong17 used the Mutual Information between features to select, in
an online manner, reliable features for tracking. In their particle filter approach to tracking multiple objects,
Cui et al.18 evaluated the discriminability of features by way of the Mutual Information between features and
multiple class labels. Hong and Han19 also used a particle feature approach in which feature weights were
computed by maximizing the Mutual Information between the target model and query features. Mahadevan and
Vasconcelos7,8 used MMD to define bottom-up saliency. This approach provided an optimum way in which to
select the most discriminant features from a set of band-pass filters.6
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Figure 1: The feedback mechanism between online feature learning and spatial learning allows CACTuS-FL to
autonomously focus attention to regions of locally correlated saliency to selected image features.21 It−1

S is the
learnt image of the object that is produced in the tracking stage of the algorithm by the Shape Estimating Filter
(SEF). Itm is the measured, fused likelihood ratio (LR) map produced in the detection stage of the algorithm.

3. ONLINE FEATURE SELECTION USING MUTUAL INFORMATION

This section describes the implementation of two online feature selection schemes based on MMD and mRMR.
These schemes are tested across three discriminant visual tracking algorithms: our implementation of the original
algorithm by Collins et al.1 (hereafter called Collins), a modified version that uses more advanced input features
(hereafter called Collins+), and the multi-object tracking algorithm CACTuS-FL.9 The Collins and CACTuS-FL
algorithms are similar in terms of object detection, but differ in their general approach to object tracking.

3.1 Tracking

The Collins/+ algorithms use a simple mean shift tracker3 to carry out single object tracking. This takes the
detection maps computed from N selected features as its input. The mean shift process is applied separately to
each map and this generates, via gradient ascent, N estimates of the object position, which are combined to give
the final estimate of 2D position in the current frame.

CACTuS-FL, on the other hand, was designed for multi-object tracking and uses multiple sub-trackers called
Shape Estimating Filters (SEFs).20 These sub-trackers operate simultaneously, competing with each other across
the video frame and attempting to track all salient objects. The aim of this is to make the tracking more robust
by explaining away all distracting clutter in the scene. Each SEF tries to track and detect a single object by
learning its state model, which includes a probabilistic representation of the object shape. Single object tracking
is carried out by each SEF using a factorised state-space made up of two dimensional PMFs that correspond to
shape, position and velocity, all of which are linked through a hierarchical model. A Bayesian update scheme
is applied to perform prediction and measurement of shape, position and velocity at each time-step of a video
sequence.

3.2 Detection

CACTuS-FL performs object detection using an online feature learning process that is based on that of Collins.
The Collins algorithm uses linear colour channel (RGB) combinations:1

X ≡ {w1R+ w2G+ w3B | w1, w2, w3 ∈ [−2,−1, 0, 1, 2]} , (9)

where X is the set of candidate features and w1, w2, w3 are weights for each colour channel. After discarding
(w1, w2, w3) = (0, 0, 0) and redundant combinations (w′

1, w
′
2, w

′
3) = k(w1, w2, w3)), Eq. 9 yields 49 input features.

The Collins+ and CACTuS-FL input features consist of a subset of only 9 colour channel combinations, obtained
by using w∗ ∈ [−1, 0, 1] in Eq. 9, together with a spectral saliency feature,23 a motion history image feature,24

four Gabor14 filter features, and two color opponency (Red-Green, Blue-Yellow) features.
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Figure 2: Target and local background regions for the Collins/+ (left) and CACTuS-FL (right) tracking
algorithms, shown for the second frame of the car video sequence.22 The target region for the Collins+ tracker is
indicated by the red rectangle, while that of the CACTuS-FL tracker this is defined using the probabilistic pixel
weight mask shown in cyan (over the car). The local background region for the Collins/+ tracker is defined
by the area between the blue and red rectangles, while that of the CACTuS-FL tracker is defined using the
complement of the probabilistic target mask, computed over an appropriately chosen rectangular region based
on the position of the tracker (white dots).

All of the discriminant tracking algorithms tested here compute a Likelihood Ratio for each feature: LR =
F t (u) /Bt (u), and this is propagated back into each feature map to generate a set of LR (detection) maps at
every frame t. The numerator and denominator of LR are the class-conditional feature response PMFs: the
normalized target region feature response histogram (F t (u)) and the normalized local background region feature
response histogram (Bt (u)), where u is a bin corresponding to a range of feature response values.

In CACTuS-FL, F t is computed by using the learnt object image from the previous frame It−1
s as a pixel

weighting mask and feature values from the current frame Zt according to:

F t(u) =

∑

i
It−1
s (i) δ (Zt (i)− u)

Σu

, (10)

where i is a given pixel index, δ is the Dirac delta function and 1
Σu

is a normalization constant. Bt is generated

in a similar way, using pixel weighting mask of 1− It−1
s over an appropriately chosen patch of the frame. Using

the learnt image It−1
s to define the target and local background regions leads to a more precise extraction of

class-conditioned feature response, which has been shown to reduce model pollution and mitigate the effects of
model drift,21 thereby making the tracking more robust. This idea is illustrated conceptually in Figure 1 and
shown in practice in the right plot of Figure 2. For the Collins/+ algorithms the target and local background
feature response are extracted in a less flexible manner using a priori defined rectangular binary masks, as
illustrated in Fig. 2.

While the LR maps in Collins/+ are passed to the tracking process separately, the output of the CACTuS-
FL detection stage is a single fused LR map that is then passed to its SEF. This LR map fusion is normally
implemented as a weighted sum,9 where the weights are the scores used to rank features for feature selection
(see below). In this study however, an un-weighted summation of likelihood maps is used instead in order to
decouple the effects of feature selection and fusion on the overall tracking performance.

3.3 Online Feature Selection

Online feature selection involves choosing, in each frame t, a subset of N features to be used in the tracking
stage. The value of N is chosen to be 6 in this study, however it should be noted that this choice is somewhat
arbitrary, and, based on our experience, other similar (e.g. 5, 4) values may provide comparable performance.
The baseline feature selection algorithm used in Collins/+ ranks features according to the Variance Ratio1 (VR)



metric, calculated using the log likelihood ratio L = log(LR) and class-conditioned feature response distributions
F and B:

VR(L;F,B) =
var(L; (F +B)/2)

var(L;F ) + var(L;B)
, (11)

where, for a given PMF p, the variance of L with respect to p is: var(L; p) =
∑

u p(u)L
2(u) − [

∑

u p(u)L(u)]
2.

In Collins/+ features are ranked according to their VR scores and the corresponding top 6 LR maps are chosen
as inputs to the mean shift tracker.

In the CACTuS-FL baseline algorithm the feature score is given by the product of VR and a similarity score
that is based on the Bhattacharyya coefficient:25

B =
∑

u

√

F t
m (u)F t−1

s (u) , (12)

where B rewards temporal consistency between the measured target region feature response F t
m measured for

the current frame and a target region feature response learnt up to the previous frame F t−1
s . Once the similarity

score is computed, the learnt feature response is updated:

F t
s (u) =

F t−1
s (u)F t

m (u)

Σu

, (13)

where 1
Σu

is a normalization constant, so that F t
s is the posterior learnt target PMF for the current frame. Each

feature is ranked according to its combined score (VR ×B). The corresponding top 6 LR maps are averaged to
yield the combined LR map that serves as input to the SEF.

The information theoretic MMD and mRMR algorithms provide two alternatives to the baseline feature
selection algorithms described above. The application of MMD involves calculating marginal diversity I(Xk;C)
for each feature, ranking them according to this and then selecting the top 6 LR maps that correspond to those
features. The marginal diversity I(Xk;C) is computed according to Eq. 1. The joint PMF p(Xk = x;C = i)
required for this is built by concatenating the two un-normalized class-conditional feature response 1D histograms
and normalizing the resulting 2D histogram. The marginal PMFs p(Xk = x) and p(C = i) are then simply
computed by integrating all bins along the C and Xk axes of p(Xk = x;C = i), respectively.

The marginal diversity scores are also used in mRMR, which proceeds as a forward search in which features
that satisfy Eq. 8 are sequentially removed from the set of remaining features (X\Sm−1) and included in the set
of selected features (Sm−1), which initially contains the feature with the largest marginal diversity. The Mutual
Information between two features I(Xj ;Xi) is computed according to Eq. 1 and also requires building a joint
PMF and its marginals. The region chosen to fill this joint PMF is the rectangular patch of feature map from
which both the target and local background feature response are extracted.

4. EXPERIMENTAL EVALUATION

4.1 Qualitative Evaluation

Fig. 3 and 4 illustrate how feature selection works in practice by applying Collins+ and CACTuS-FL, respectively,
to the car video sequence.22 In Fig. 3 the plots on the left show the evolution, with frame number, of VR (for the
baseline algorithm) and of marginal diversity (I(Xk;C)) (for the MMD algorithm). In Fig. 4, the CACTuS-FL
baseline feature selection scheme uses combined scores of VR × B, so a scheme using only VR is also shown
for comparison, along with a scheme using marginal diversity. Both of VR and marginal diversity measure
how discriminant a given feature is. Large temporal fluctuations in these scores tend to indicate changing local
background conditions, which tend to take place in the frames just before and after the tracker loses the object
(indicated by the vertical red lines).

The plots on the right in Fig. 3 and 4 show the features selected by each scheme, which are the 6 top ranked
features at each frame. Comparing Fig. 3 to Fig. 4 suggests that the overall effect of using the learnt object shape
to extract class-conditioned feature responses is an enhanced temporal consistency in the choice of features: for
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Figure 3: Feature selection based on the baseline scheme, which uses Variance Ratio (VR) (top plots), and a
scheme using maximum marginal diversity (MMD) (bottom plots), applied in the Collins+ tracker for the car
sequence.22 The plots on the left show the evolution of VR and marginal diversity (I(Xk;C)) scores, respectively,
as functions of the frame number. The plots on the right show the top 6 ranked features at each frame whose
corresponding likelihood ratio (LR) maps are the inputs to the mean shift tracker.3 The candidate feature index
indicated on the y-axis correspond to the numbers listed in the legend on the left. The vertical red lines indicate
the frames at which the tracker is considered by the VOT2013 framework22 to have stopped tracking the target.

all feature selection schemes the plots on the right show a more consistent selection across the different frames
in Fig. 4 than in Fig. 3. Fig. 4 also shows that for the CACTuS-FL algorithm there is a clear differentiation
in the preferred features of the baseline (VR × B) and the VR/MMD feature selection schemes, with colour
combination features being preferred by both VR and MMD. These features tend to be more correlated with
each other than other types of features, which may worsen the overall tracking performance (see below and Table
3).

4.2 Quantitative Evaluation

The tracking performance given by online feature selection with MMD or mRMR is evaluated across the Collins,
Collins+ and CACTuS-FL visual tracking algorithms against their baseline performance. These comparisons
use 8 of the 16 videos used in the Visual Object Tracking Challenge VOT2013,22 which were recorded under
changing background, lighting conditions and/or object appearance. The video sequences together with a tracking
performance evaluation kit are publicly available at http://votchallenge.net/vot2013/. Each video contains
a single object of interest to be tracked. The selected videos were those whose camera motion (camera jerk) is
within the limits of the CACTuS-FL motion model. Tracking performance is evaluated through the VOT2013
evaluation kit and is based on the robustness22 score, which is defined as the number of times that a tracking
algorithm lost track of the object of interest and had to be re-initialized. The tracking algorithm is considered
to have lost the track when the spatial overlap between tracker predicted bounding box and the ground truth
bounding box drops to zero.22
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Figure 4: Feature selection based on the baseline scheme, which uses Variance Ratio×Similarity Score (VR×B)
(top plots), a scheme that uses only the Variance Ratio (VR) (middle plots), and a scheme that uses maximum
marginal diversity (MMD) (bottom plots), applied in the CACTuS-FL tracker for the car sequence.22 The plots
on the left show the evolution of VR×B, VR and marginal diversity (I(Xk;C)) scores, respectively, as functions
of the frame number. The plots on the right show the top 6 ranked features at each frame whose corresponding
likelihood ratio (LR) maps are averaged and this becomes the input for the shape estimating filter.20 The
candidate feature index indicated on the y-axis correspond to the numbers listed in the legend on the left. The
vertical red lines indicate the frames at which the tracker is considered by the VOT2013 framework22 to have
stopped tracking the target.



Tables 1, 2 and 3 provide the robustness scores for the Collins, Collins+ and CACTuS-FL tracking algorithms,
respectively. The robustness scores for each video sequence (columns) are shown in each table for three online
feature selection algorithms (rows): baseline, MMD and mRMR. Table 3 provides additional results for a feature
selection scheme using only VR, provided becuase the CACTuS-FL baseline scheme uses combined scores of
VR × B. Columns on the far right provide the total robustness score for all 8 video sequences and a particular
feature selection scheme.

Tables 1 and 2 show that when applied to Collins and Collins+, both MMD and mRMR lead to enhanced
tracking performance with respect to the baseline. The improvement offered by both MMD and mRMR is more
pronounced for Collins+, which uses a wider variety of input feature algorithms. mRMR yields the best results
for both Collins and Collins+, with the latter showing a striking degree of improvement, so much so that the
mRMR robustness score of 7 is comparable to the results achieved using CACTuS-FL in Table 3.

The mRMR feature selection scheme does not improve on the CACTuS-FL baseline performance, although
it should be noted that in absolute terms, this baseline already provides good tracking performance that is
competitive against what is achieved by recent state of the art single-object tracking algorithms.9 These results
show that using the learnt object shape to extract the class-conditioned feature response benefits all of the
tested feature selection schemes (compare Tables 2 and 3). It is interesting to note that when applied in
CACTuS-FL, both the VR and MMD feature selection schemes perform poorly compared to the baseline and
mRMR. This shows that incorporating a feature similarity score to reward temporal consistency leads to better
overall performance in the baseline algorithm than what is achieved with VR alone or with MMD. Taking the
redundancies between features into account by applying mRMR then improves on the performance of MMD,
matching that of the baseline.

Table 1: The tracking robustness22 of Collins for different online feature selection algorithms using videos from
the Visual Object Tracking Challenge VOT2013.22

Algorithm car david diving face gymnastics iceskater jump woman total

baseline (VR) 3 10 0 5 3 4 0 5 30
MMD 3 5 2 6 2 0 1 5 24
mRMR 2 5 5 5 1 0 1 3 22

Table 2: Tracking robustness22 of Collins+ for different online feature selection algorithms using videos from the
Visual Object Tracking Challenge VOT2013.22

Algorithm car david diving face gymnastics iceskater jump woman total

baseline (VR) 1 12 4 7 2 2 1 6 35
MMD 3 4 3 6 2 0 1 4 23
mRMR 0 3 0 2 0 0 0 2 7

Table 3: Tracking robustness22 of CACTuS-FL for different online feature selection algorithms using videos from
the Visual Object Tracking Challenge VOT2013.22 Given that, in the case of CACTuS-FL, the baseline feature
selection scheme uses the combined score of Variance Ratio×Similarity Score (VR×B), the robustness obtained
with a feature selection scheme that uses only Variance Ratio (VR) is also provided for comparison.

Algorithm car david diving face gymnastics iceskater jump woman total

baseline (VR ×B) 1 0 0 0 0 0 0 4 5

VR 4 3 3 0 2 2 1 5 20
MMD 1 2 3 0 3 2 0 3 14
mRMR 2 0 0 0 0 0 1 2 5



5. CONCLUSION

In this paper we have investigated experimentally the problem of online feature selection in discriminant visual
tracking. In particular, we have sought to approximate the infomax space of features, which provides optimum
classification in the Bayes classification error sense.13 To this end, we have applied the minimal-redundancy-
maximal-relevance5 (mRMR) criterion in full to the problem of choosing the subset of features that best dis-
criminate between a target and its local background. Experiments were conducted on real world data sets using
a single-object discriminant tracking algorithm which was run separately for two input feature libraries. The re-
sults showed that mRMR offers improved tracking robustness with respect to alternative online feature selection
schemes that use the Variance Ratio metric or maximum marginal diversity (MMD), neither of which account
for redundancy among the input features. The level of improvement is dependent on the input feature library,
and a more advanced library of features allowed the Collins+ algorithm to reach a similar level of performance
to that achieved by the advanced multi-object tracking system CACTuS-FL using the same library.
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